春雨里洗过的太阳

世间所有的相遇,都是久别重逢

Flink的基础

一 Flink的基础上手

1 maven依赖

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
	<properties>
<maven.compiler.source>1.8</maven.compiler.source>
<maven.compiler.target>1.8</maven.compiler.target>
<encoding>UTF-8</encoding>
<scala.version>2.11.8</scala.version>
<scala.compat.version>2.11</scala.compat.version>
<hadoop.version>2.6.0</hadoop.version>
<flink.version>1.10.0</flink.version>
<spark.version>2.2.0</spark.version>
</properties>

<dependencies>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>${scala.version}</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>${spark.version}</version>
</dependency>

<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.10</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.hbase</groupId>
<artifactId>hbase-client</artifactId>
<version>2.0.0</version>
</dependency>


<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-streaming-scala_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-scala_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-clients_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-table-planner_2.11</artifactId>
<version>${flink.version}</version>
</dependency>


<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>${hadoop.version}</version>
<exclusions>
<exclusion>
<artifactId>xml-apis</artifactId>
<groupId>xml-apis</groupId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.38</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.22</version>
</dependency>
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka-0.9_2.11</artifactId>
<version>${flink.version}</version>
</dependency>
</dependencies>


<build>
<!-- <sourceDirectory>src/main/scala</sourceDirectory>-->
<!-- <testSourceDirectory>src/test/scala</testSourceDirectory>-->
<plugins>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.5.1</version>
<configuration>
<source>${maven.compiler.source}</source>
<target>${maven.compiler.target}</target>
<!--<encoding>${project.build.sourceEncoding}</encoding>-->
</configuration>
</plugin>

<plugin>
<groupId>net.alchim31.maven</groupId>
<artifactId>scala-maven-plugin</artifactId>
<version>3.2.0</version>
<executions>
<execution>
<goals>
<goal>compile</goal>
<goal>testCompile</goal>
</goals>
<configuration>
<args>
<!--<arg>-make:transitive</arg>-->
<arg>-dependencyfile</arg>
<arg>${project.build.directory}/.scala_dependencies</arg>
</args>

</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-surefire-plugin</artifactId>
<version>2.18.1</version>
<configuration>
<useFile>false</useFile>
<disableXmlReport>true</disableXmlReport>
<includes>
<include>**/*Test.*</include>
<include>**/*Suite.*</include>
</includes>
</configuration>
</plugin>

<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>2.3</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
<filters>
<filter>
<artifact>*:*</artifact>
<excludes>
<!--
zip -d learn_spark.jar META-INF/*.RSA META-INF/*.DSA META-INF/*.SF
-->
<exclude>META-INF/*.SF</exclude>
<exclude>META-INF/*.DSA</exclude>
<exclude>META-INF/*.RSA</exclude>
</excludes>
</filter>
</filters>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>com.batch.WordCount</mainClass>
</transformer>
</transformers>
</configuration>
</execution>

</executions>
</plugin>
</plugins>
</build>

2 批处理的wc

1
2
3
4
5
6
7
8
9
10
11
def main(args: Array[String]): Unit = {
//获取执行环境
val env: ExecutionEnvironment = ExecutionEnvironment.
//读取文件
val ds: DataSet[String] = env.readTextFile("path/wc.txt")
val result: AggregateDataSet[(String, Int)] = ds.flatMap(_.split(" "))
.map((_, 1))
.groupBy(0)//0代表下标
.sum(1)//1代表下标
result.print()
}

2 流处理的wc

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
def main(args: Array[String]): Unit = {

val env = StreamExecutionEnvironment.getExecutionEnvironment
//从外部命令中获取参数 flink封装的有 格式 --host localhost --port 7777
val paramTool:ParameterTool = ParameterTool.fromArgs(args)
val host:String = paramTool.get("host")
val port:String = paramTool.getInt("port")
//env.setParallelism(8) 设置全局并行度 ,且每个算子都可单独设置并行度
val stream: DataStream[String] = env.socketTextStream(host,port)
val result: DataStream[(String, Int)] = stream.flatMap(_.split(" ")).setParallelism(1)
.map((_, 1)).setParallelism(1)
//流式的没有groupBy 担忧keyby
.keyBy(0)//.setParallelism(1)
.sum(1).setParallelism(1)
result.print()//.setParallelism(1)//可以将数据写到一个文件中
env.execute("Runing")//运行任务的名称
}
1
2
3
运行结果:
3> (flink,1)
2> (hadoop,2)

若是不设置并行度,默认的并行度是当前机器的核数

运行结果的2>,3>代表并行度(当前结果在哪个子任务中执行),默认是按照key做hash计算出来,这样相同的key会在同一个子任务中运行,可以避免各个子任务间拉取数据

1
2
3
4
5
6
7
当只在print的时候设置.setParallelism(1) 并行度为1,之前的不进行设置,则输入的数据顺序,和输出的结果数据的顺序可能不一致,因为前面几个算子的默认并行度为核数(我的4)
flink---> map1 sum1
hapoop---> map2 sum1
print(并行度1)
flume---> map3 sum1
kettle---> map4 sum1
这样处理数据因为网络延迟等原因,有些sum算的快,有些慢,导致进入print的数据是乱序的

二 flink的部署

2.1 Standalone模式